想要探索电池回收发电机维修用心服务的奥秘吗?不妨点击这个产品视频,它将带您走进一个精彩绝伦的世界,让您对产品的每一个细节都了如指掌。
以下是:电池回收发电机维修用心服务的图文介绍
泽兴柴油发电机租赁厂家有限公司是一家专业加工和生产 安徽蚌埠高压柴油发电机出租的公司。公司拥有现代化的 安徽蚌埠高压柴油发电机出租生产设备,专业的 安徽蚌埠高压柴油发电机出租设计师,高水平制作人员,操作熟练的安装施工队伍,规范化,标准化,优良化的工程质量和高素质的管理。从设计、生产、安装为客户提供一站式服务,以丰富的生产安装和施工管理经验取得众多客户的信任。
摘要:在政策的引导和推动下,我国新能源汽车产业发展迅猛。工信部数据显示,2009-2016年上半年累计生产新能源汽车67.4万辆。国务院发布的《节能与新能源汽车产业发展规划(2012-2020年)》,到2020年,纯电动汽车和插电式混合动力汽车累计产销量超过500万辆。中国汽车技术研究中心预测,到2020年前后,我国各类电动车动力电池累计报废量将超过12-17万吨。车用动力电池的报废渐成规模,如何处置退役动力电池将是影响新能源汽车发展的重大课题。 一、动力电池回收再利用发展现状 (一)多国制定相关法规并建立回收体系 发达主要以法律作为防治电池污染和实现循环利用的重要保障。通过建立健全完善的法律机制,充分实施延伸生产者责任制度,利用法律强制力对各个环节进行规定,约束整个电池生命周期的各个相关主体,使其必须按照法律规定承担责任和履行义务,并对违反法律规定的主体进行严厉的惩罚。 1.美国 美国历来相当重视环境管理方面的工作,针对废旧电池的生产、收集、运输和贮存等过程提出技术规范,并采取生产者责任延伸和押金制度。 立法方面。针对废旧电池立法涉及联邦、州及地方3个层面,其中《资源保护和再生法》、《清洁空气法》、《清洁水法》从联邦法规角度,采用许可证管理办法,加强对电池生产企业和废旧电池资源回收利用企业的监管。《含汞电池和充电电池管理法》主要针对废旧二次电池的生产、收集、运输、贮存等过程提出相应技术规范,同时明确了有利于后期回收利用的标识规定。纽约和加州的产品管理法案中覆盖到锂离子电池产品,要求制造商制定在不牺牲消费者和零售商利益的前提下制定电池收集和回收的计划。 回收方面。美国国际电池协会制定了押金制度,促使消费者主动上交废旧电池产品。同时美国政府推动建立电池回收利用网络,采取附加环境费的方式,通过消费者购买电池时收取一定数额的手续费和电池生产企业出资一部分回收费,作为产品报废回收的资金支持,同时废旧电池回收企业以协议价将提纯的原材料卖给电池生产企业,此种模式既能让电池生产企业很好的履行相关责任义务,在一定程度上又保证了废旧电池回收企业的利润,落实了生产者责任延伸制度。 2.欧盟 欧盟采用生产者承担回收费用的强制回收制度,并对电池使用者提出了法定义务。 自1990年开始,欧洲的车厂已开始强调在汽车中使用可回收的材质及零组件的再利用。2000年欧盟通过2000/53/EC《关于废弃汽车的技术指令》(即ELV指令),目标在于建立收集、处理、再利用的机制,鼓励将废弃汽车的部件重复利用,减少汽车产品对环境的破坏,并致力于环境保护、资源保护、以及能源节约。欧盟2006/66/EC电池指令与电池回收直接相关,该指令涉及所有种类的电池,并要求汽车电池生产商应建立汽车废旧电池回收体系。欧盟从2008年开始强制回收废旧电池,回收费用则由生产厂家来负担。 以回收领域较为成熟的德国为例。德国已建立较完善的回收利用法律制度,依据欧盟和德国关于电池回收法规的规定:在德国,电池生产和进口商必须在政府登记;经销商要组织收回机制,配合生产企业向消费者介绍在哪儿能免费回收电池;终用户有义务将废旧电池交给指定的回收机构。 3.日本 日本在回收处理废电池方面一直走在世界前列,建立了蓄电池生产-销售-回收-再生处理的回收利用体系。 相关法律法规可以分为三个层面:层指基本法,即《促进建立循环型社会基本法》;第二层指综合性法律,包括《固体废弃物管理和公共清洁法》、《资源有效利用促进法》、《节能法》、《再生资源法》等。第三层指专门法层面,包括根据各种产品的性质制度的专门法规。 从1994年10月起,日本电池生产厂商开始采用电池收回计划,建立起蓄电池生产-销售-回收-再生处理的电池回收利用体系。这种回收再利用系统是建立在每一位厂家自愿努力的基础上,零售商家、汽车销售商和加油站免费从消费者那里回收废旧电池。电池遵循与其分布路线相反的方向,由回收公司进行分解。 4.中国 中国动力电池回收体系不断完善,并明确了动力电池回收责任主体,各城市对电池回收利用政策也进行了积极探索,但在落实方面差距甚远。 2012年,国务院在《节能与新能源汽车产业发展规划(2012-2020)》中明确规定,要加强动力电池梯级利用和回收管理。制定动力电池回收利用管理办法,建立动力电池梯级利用和回收管理体系,明确各相关方的责任、权利和义务。 2014年7月,《国务院办公厅关于加快新能源汽车推广应用的指导意见》提出要研究制定动力电池回收利用政策,探索利用基金、押金、强制回收等方式促进废旧动力电池回收,建立健全废旧动力电池循环利用体系。2016年以来,工信部相继出台了《电动汽车动力蓄电池回收利用技术政策(2015年版)》、《新能源汽车废旧动力蓄电池综合利用行业规范条件》和《新能源汽车废旧动力蓄电池综合利用行业规范公告管理暂行办法》3项文件,明确废旧电池回收责任主体,加强行业管理与回收监管。 为鼓励生产企业回收动力电池,不少地方政府也在积极探索。2014年上海市发布《上海市鼓励购买和使用新能源汽车暂行办法》,要求车企回收动力电池,政府给予1000元/套的奖励。2015年深圳发布《深圳市人民政府关于印发深圳市新能源汽车推广应用若干政策措施的通知》,内容显示要求制定动力电池回收利用政策,由整车制造企业负责新能源汽车动力电池强制回收,并由整车制造企业按照每千瓦时20元专项计提动力电池回收处理资金,地方财政按照经审计的计提资金额给予不超过50%比例的补贴,建立健全废旧动力电池循环利用体系。 但实际上,由于我国新能源汽车的高速发展仅从2014年开始,目前多数动力电池还在质保期内,尽管消费者存在疑虑,但车企包括电池企业尚未将其落实。 (二)各国重视动力电池回收并进行工程示范 动力电池回收利用虽然已经引起政府部门、科研机构、部分企业的关注和研究,发展潜力巨大,但还没有大量的资源投入。美国、日本、欧洲和我国在退役电池的回收再利用方面进行了不同的尝试。表1为国内外典型的动力电池回收再利用示范项目,涉及到储能、移动电源、分布式发电、商业可行性研究及拆解、回收等多方面。 表1动力电池回收再利用示范项目概况 (三)我国基本掌握回收技术但工艺水平有待 动力电池的再利用的一般过程一般是将废旧电池失效、拆解、检测、筛选,接着二次重组再利用。通常对废旧锂离子电池的回收过程是:首先彻底放电,然后对电池进行拆解分离出正极、负极、电解液和隔膜等各组成部分,再对电极材料进行碱浸出、酸浸出、除杂后进行萃取以实现有价金属的富集。回收处理方法按提取工艺可分为3大类:干法回收技术、湿法回收技术和生物回收技术。 我国已基本掌握相应的回收处理技术,但是回收工艺水平较低。一方面,国内针对动力电池的回收工艺路线还处于探索阶段,以循环制造为目标的回收技术还没有开展。另一方面,国内对动力电池回收处理普遍还停留在废物处理的阶段,资源回收再利用以及锂离子电池的循环再制造技术的研究仍未开展,对锂离子电池回收所涉及到的生产和环境保护等问题没有具体的工艺措施和装备保证。 (四)动力电池回收有利于环境保护和资源节约 车用动力电池报废后如不进行必要的处理,会造成环境污染和资源浪费。我国车用动力电池绝大多数为锂离子电池,锂离子电池虽然不含汞、镉、铅等毒害性较大的重金属元素,但废旧锂离子电池如果处理不当仍能够对环境造成极大的污染。比如废旧锂离子电池的电极材料进入环境中,可与环境中其它物质发生水解、分解、氧化等化学反应,产生重金属离子、强碱和负极碳粉尘,造成重金属污染、碱污染和粉尘污染;电解质进入环境中,可发生水解、分解、燃烧等化学反应,产生HF、含砷化合物和含磷化合物,造成氟污染和砷污染。 有研究表明,回收锂离子电池可节约51.3%的自然资源,包括减少45.3%的矿石消耗和57.2%的化石能源消耗。锂离子电池材料中,包含一些有价值的材料。以一种三元材料电池为例,其中镍含量12%、钴5%、锰7%、锂1.2%,如果通过回收工艺,将有价值材料回收再利用,会起到节约资源的目的。 (五)动力电池再利用提高电池全生命周期使用价值 从新能源汽车上淘汰的动力电池,仍基本保持70%-80%的初始能量,如果直接拆解回收,是对电池剩余使用的浪费,动力电池报废后除了化学活性下降外,电池内部的化学成分并没有改变,这些电池的能量完全可以继续满足家庭储能、分布式发电、微网、移动电源、后备电源、应急电源等中小型储能设备和大型商业储能和电网储能市场的使用,如果废旧动力电池梯次利用技术提高、经济成本下降,在梯次利用领域,动力电池的全生命周期使用价值将会得到充分利用。 二、动力电池回收和再利用面临的主要问题 (一)退役电池复杂性高,拆解不便 退役动力电池复杂程度很高,包括不同类型电池制造和设计工艺的复杂性、串并联成组形式、服役和使用时间、应用车型和使用工况的多样性。比如,电池有方型、圆柱形不同类型,其叠片、绕组形式也不同,由于集成形式不同,成组后电池包也各异。 这些复杂性导致电池回收再利用或者拆解时极为不便。如果进行自动化拆解,对生产线的柔性配置要求比较高,从而导致处置成本过高。因此,在目前自动化水平不高的情况下,多数工序是人工完成的,工人的技能水平可能会影响着电池回收过程中的成品率,同时手工拆解过程中,电池短路、漏液可能导致起火或者爆炸,对人身和财产有潜在隐患。 (二)退役电池一致性差,品质不高 退役电池的再利用必须经过品质检测,包括性评估、循环寿命测试等,将电芯分选分级,再重组后才可以被再利用。但是如果动力电池在服役期间没有完整的数据记录,再利用过程进行电池寿命预测时,准确度可能会下降,电池的一致性无法保障,同时测试设备、测试费用、测试时间、分析建模等成本都会增加。由于不同电池的内阻特性、电化学特性、热特性相同,电池的不一致性和可靠性可能也无法保证,如果一些存在问题的电池在筛选过程中没有被检验出来,而再次被使用,会增加其他整个电池系统的风险。 (三)回收拆解成本较高,经济性欠佳 目前,动力电池回收产业还未形成规模效应,国内还未建立成熟的回收体系,一些企业虽然涉及了动力电池回收业务,但是收效率较低,投入超出电池价值,缺乏盈利点。比如一家采用机械法和湿法回收废旧磷酸铁锂电池的公司,回收处理1吨废旧磷酸铁锂动力电池的成本为8540元,而再生材料的收益仅为8110元,亏损430元。由于锂离子电池回收技术路线比较复杂,回收工艺成本高,而除了三元系正极回收价值高外,像锰酸锂、磷酸铁锂系正极回收价值偏低。 在动力电池再利用领域,由于电池检测和重组时,设备和人工投入成本较高,导致电池出厂价格偏高,用于储能并不具有经济性。根据中国科学电力研究院数据,2015年锂离子电池储能综合度电成本为0.73元/kWh,而铅炭电池、抽水蓄能度电成本目前已经接近0.4元/kWh,目前锂离子电池储能经济成本还不具备优势。 (四)回收政策缺乏监管,执行不乐观 我国2016年发布了《电动汽车动力蓄电池回收利用技术政策(2015年版)》,明确采用生产者责任延伸制度,电动汽车生产企业承担电动汽车废旧动力蓄电池回收利用的主要责任,动力蓄电池生产企业承担电动汽车生产企业售后服务体系之外的废旧动力蓄电池回收利用的主要责任,梯级利用电池生产企业承担梯级利用电池回收利用的主要责任,报废汽车回收拆解企业应负责回收报废汽车上的动力蓄电池。但是,由于该政策并不是强制性管理且缺乏明确的奖惩机制,加上动力电池回收再利用经济性不高,目前各级动力电池相关主体对政策的执行不乐观。 三、结论和建议 随着新能源汽车的快速发展,我国动力电池报废也将成规模,车用动力电池退役后,如果不进行必要的回收和处理,不仅会造成资源的浪费,也会对环境造成一定的污染。政府、企业及消费者应该积极发挥联动机制,推动动力电池回收和再利用产业的发展,减少动力电池的污染和浪费问题,延长动力电池使用寿命和价值链。 (一)研究电池标准化并落实可追溯体系 动力电池的标准化,影响了其回收和再利用过程中拆解、检测等装备复杂程度、一致性、性和经济性,因此有必要对动力电池的结构设计、连接方式、工艺技术、集成安装等标准化进行研究。 进一步落实《电动汽车动力蓄电池回收利用技术政策(2015年版)》中要求的动力电池编码制度及可追溯体系,尽快制定动力电池编码强制标准,将可追溯系统与新能源汽车产品公告管理挂钩,保证电池有全生命周期信息记录,提高检测评估的便利性和准确性。 (二)制定和实施动力电池回收奖惩措施 《电动汽车动力蓄电池回收利用技术政策(2015年版)》明确了电池回收责任主体和追责方式,但是对新能源汽车动力电池回收,目前尚未有明确的赏罚机制,企业也没有将动力电池回收看成是有利可图的事情。目前,亟需制定动力电池回收再利用激励实施细则,建立明确的赏罚机制。比如对未按照回收政策履行责任义务的企业进行必要的惩罚,包括行政处罚和经济处罚,甚至与车辆公告和电池目录挂钩;可以对电池回收企业和电池再利用企业按照电池套数、容量等方式进行补贴、税收优惠,保证回收再利用企业的经济性。对消费者可以采用押金和奖励并行的制度,消费者主动上交废旧电池时,退回押金并增加额外补偿,培养消费者动力电池回收的意识。 (三)加大回收再利用关键技术研发 需要加大对废旧电池拆解、重组、测试和寿命预测等关键技术进行攻关,提高其技术成熟度和生产过程的性;同时提高电池拆解,重组及回收技术的工艺水平和自动化水平,提高拆解、重组和回收过程的效率,使动力电池回收的材料和再利用电池出厂具有经济可行性和性。 (四)鼓励商业模式创新试点 在开展技术经济分析和评价的基础上开展创新商业模式试点,积累经验之后,对具有推广价值的循环经济发展模式进行复制,避免一哄而上。落实动力电池回收再利用体系建设,并利用补贴机制和优惠政策提高企业和消费者的积极性,但要避免一些投机企业为了补贴跟风进入这个行业,形成公平和良性的竞争机制,以有利于产业发展。
本发明涉及新能源材料锂电池资源化回收处理领域,尤其是一种锂电池回收处理的方法。背景技术:锂离子电池由于工作电压高、体积小、无记忆效应、自放电小、循环寿命长等优点,得到广泛的认可。随着2014年我国逐渐普及新能源车,其销量预计在2020年将达到200万辆。一般而言,当电池容量衰减到60~80%左右,便达到设计的使用寿命,急需进行替换,新能源车电池的有效寿命在4~6年左右,也就是说,在未来2年内必将迎来大规模的动力电池报废阶段。废弃锂离子电池中通常含钴5~15%、锂2~7%、镍0.5~2%,其回收再利用价值相对较高。另外,废弃锂离子电池中还含有六氟磷酸锂等有毒物质,会对环境和生态系统造成严重污染,钴、锰、铜等重金属通过积累作用也会由生物链危害人类自身,极具危害性。因此随着锂离子电池应用广泛性,对锂离子电池进行回收处理以减少对环境造成的污染、缓解资源匮乏等问题,具有重要的社会意义和经济意义。而如何回收率是值得研究的方向。技术实现要素:为了解决上述问题,本发明提出了一种锂电池回收处理的方法,以改善上述问题。为了实现上述目的,本发明采用如下技术方案:锂电池回收处理的方法,包括以下步骤:1)将废旧锂电池放电后剪切破碎并进行分离,得到悬浮液;2)将步骤1)得到的悬浮液与无机酸、过氧化氢混合进行浸取,得酸化浸出液;3)将步骤2)得到的酸化浸出液进行沉积后,对其进行过来膜处理,后得到包含li+的溶液;步骤3)中的过滤膜处理的步骤具包括:过滤预处理、超滤处理、陶瓷纳滤、耐酸过滤处理;耐酸碱过滤处理的膜材料为陶瓷和/或高分子聚合物。经超滤处理分离颗粒的分子量大于500,粒径大于10nm;陶瓷纳滤以及酸碱过滤处理对沉积后的酸化浸出液进行分离、浓缩,旨在使所产水达到回收标准。步骤3)中过滤预处理包括除浊度、除悬浮物、降温和调ph。步骤3)中沉积为草酸法化学沉积和/或电沉积。步骤2)中无机酸为盐酸或或硝酸,不选用硫酸、磷酸是因为多元酸在后面采用纳滤处理时无法将锂和镍钴锰分开。无机酸的浓度为1~8mol/l。步骤2)中过氧化氢的浓度为1~10%。优选地,过氧化氢的浓度为2~4%。无机酸与过氧化氢的摩尔比为2.5~20:1。电沉积时,沉积条件为电流密度20~55ma/cm2,ph=1.5~5.5,温度35~60℃。步骤2)中在浸取的搅拌时间为0.5~12h,转速为50~400r/min。本发明提供的上述回收处理方法可用于正极材料为li(ni、co、mn)o2、li2mno3、limn2o4、lifepo4等的锂电池回收,因此悬浮物溶液的正极材料成分为li(ni、co、mn)o2、li2mno3、limn2o4、lifepo4等。与现有技术相比,本发明的有益效果在于:本发明回收处理系统采用先进的综合回收工艺将废旧锂电池材料从分离、浓缩、到提纯,并利用化学沉淀/电沉积和耐酸碱的纳滤/反渗透膜处理,将废旧锂电池进行了充分的资源化回收处理。本发明的陶瓷纳滤具有高抗污、高耐压、耐油、耐酸碱、耐有机溶剂等优势,同时结合耐酸碱过滤的高耐酸/碱特种膜,具有明显的应用优势,可避免重复调ph值。本发明的锂电池回收处理方法的资源回收率可达99%,产物成分纯净;同时很大程度上降低了能耗,环保效益明显;本发明的锂电池回收处理方法易于控制、操作简单;经本发明的方法所产的水质可达到纯水的标准,有效地避免了大量水资源的浪费。附图说明图1为本发明锂电池回收处理方法的流程示意图。具体实施方式为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例1锂电池回收处理的方法,包括以下步骤:1)将废旧锂电池放电后剪切破碎并进行分离,得到悬浮液。2)将步骤1)得到的悬浮液与1mol/l的hf、4%的h2o2混合并搅拌以进行浸取,搅拌时间为0.5h,转速为400r/min,得酸化浸出液;需要说明的是,实施例1-4中的加酸比例根据悬浮液中的阳离子量来确定,分子量计算确保将镍钴锰锂等全部浸出,并保证有3~10%的富裕量;另外,无机酸与双氧水的加入摩尔比为2.5:1。3)对酸化浸出液进行依次进行除浊度、除悬浮物、降温和调节ph值、超滤处理、陶瓷纳滤处理、耐酸碱过滤处理,得到包含li+的溶液,本实施例的回收率为92%。实施例2锂电池回收处理的方法,包括以下步骤:1)将废旧锂电池放电后剪切破碎并进行分离,得到悬浮液。2)将悬浮液与8mol/l的、2%的h2o2混合并搅拌以进行浸取,搅拌时间为12h,转速为50r/min,得酸化浸出液,无机酸与双氧水的加入摩尔比为20:1。3)再对其进行依次进行除浊度、除悬浮物、降温和调节ph值、超滤处理、陶瓷纳滤处理、耐酸碱过滤处理,得到li+溶液,本实施例的回收率为91%。实施例3锂电池回收处理的方法,包括以下步骤:1)将废旧锂电池放电后剪切破碎并进行分离,得到悬浮液;2)将悬浮液5mol/l的盐酸、3%的h2o2混合并搅拌以进行浸取,搅拌时间为6h,转速为250r/min,得酸化浸出液,无机酸与双氧水的加入摩尔比为10:1;3)将酸化浸出液进行电沉积,沉积条件为电流密度20ma/cm2,ph=5.5,温度35℃;再对其进行依次进行除浊度、除悬浮物、降温和调节ph值、超滤处理、陶瓷纳滤处理、耐酸碱过滤处理,得到li+溶液,本实施例的回收率为99%。实施例4锂电池回收处理的方法,包括以下步骤:1)将废旧锂电池放电后剪切破碎并进行分离,得到悬浮液;2)将悬浮液与3mol/l的硝酸、2.2%的h2o2混合并搅拌以进行浸取,搅拌时间为8h,转速为320r/min,得酸化浸出液,酸与双氧水的加入摩尔比为7:1;3)将酸化浸出液进行电沉积,沉积条件为电流密度55ma/cm2,ph=1.5,温度60℃;再对其进行依次进行除浊度、除悬浮物、降温和调节ph值、超滤处理、陶瓷纳滤处理、耐酸碱过滤处理,得到li+溶液,本实施例的回收率为95%。实施例1-4步骤3)中除浊度、除悬浮物、降温和调节ph值的指标值详见表1:表1:本发明在预处理压滤、陶瓷纳滤处理后不需再一次进行浸取,浸出的目的是将金属氧化物转化成离子,成为离子状态后都不需要再浸取。以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
电池回收技术不成熟 现有的资料表明,废旧磷酸铁锂电池的回收处理分为两种:一种是回收金属,另一种是再生磷酸铁锂正极材料。 [3] (1)湿法回收锂和铁 此类工艺以回收锂为主,因磷酸铁锂不含有贵金属,故对钴酸锂的回收工艺进行改造。首先将磷酸铁锂电池拆解得到正极材料,粉碎筛分得到粉料;之后将碱溶液加入到粉料中,溶解铝及铝的氧化物,过滤得到含锂、铁等的滤渣;将滤渣用硫酸与双氧水(还原剂)的混合溶液浸出,得到浸出液;加碱沉淀氢氧化铁,过滤得到滤液;灼烧氢氧化铁,可得氧化铁; 调节浸出液的pH值(5.0 ~8.0),过滤浸出液得滤液,加固体碳酸钠浓缩结晶得碳酸锂。 [3
3、快速充电:快速充电是指以大电流方法的充电方式。快速充电不产生大量的气泡又不发热从而可缩短充电时间。目前,常用的快速充电主要有脉冲充电和大电流速减快冲两种。 4、均衡充电:均衡充电是以小电流(1/20C20A)进行1~3h的充电过程。主要用来一组浮充电运行(即将直流电源和回收UPS蓄电池并联连接的工作方式)回收UPS蓄电池在同样运行的条件下,由于某种原因造成的全组电池不均衡而形成的差别,以达到全组电池的均衡。此方法一般不能频繁使用,但当回收UPS蓄电池出现下列情况之一时,必须进行均衡充电: A回收UPS蓄电池回收组长时间在电流放电,或长时间担负直流电荷后未及时充电时。 B回收UPS蓄电池个别单格电压、电解液密度偏低,全组电池产生差别时。 C没有按规定周期实施充、放电。