更新时间:2024-12-24 04:21:07 浏览次数:5 公司名称:聊城 众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司
产品参数 | |
---|---|
产品价格 | 105 |
发货期限 | 电议 |
供货总量 | 电议 |
运费说明 | 电议 |
材质 | 65锰钢板 |
规格 | 1500*4000 |
品牌 | 河钢、敬业 |
切割方式 | 激光加工 |
状态 | 冷轧、热轧、淬火 |
产品参数 | |
---|---|
产品价格 | 105 |
发货期限 | 电议 |
供货总量 | 电议 |
运费说明 | 电议 |
材质 | 65锰钢板 |
规格 | 1500*4000 |
品牌 | 河钢、敬业 |
切割方式 | 激光加工 |
状态 | 冷轧、热轧、淬火 |
众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司秉承“匠心制造,服务至上”经营理念,不断创新,精益求精,以质量过硬找客户,以诚信经营留客户,以实现客户价值为目标,愿与各界人士携手合作,共图 吉林四平45#特厚板材发展,热枕欢迎国内外客商、朋友前来参观指导。
二维磨损分析指出了 Mn13Cr2和贝-马复相耐磨铸钢的二体摩65锰冷轧钢板擦磨损形式分别主要为黏着磨损和磨料磨损。三维磨损分析阐释了三体冲击磨料磨损中应变疲劳,裂纹,犁沟,嵌入磨粒和挤压堆积是贝-马复相耐磨铸钢的主要磨损机理;嵌入磨粒,犁沟,应变疲劳,切削,挤压堆积和剥落坑是Mn13Cr2的主要磨损机理。四维磨损分析解释了盐雾腐蚀和冲击磨料磨损共同作用下材料的磨损行为,低程度腐蚀试样的磨损机理主要仍表现为犁沟、应变疲劳和嵌入磨粒,试样磨损亚表层变形区较窄。此后随盐雾腐蚀时间的延长,犁沟变得更短而深,磨损失重增大,试样磨损亚表层变形区消失,材料的耐磨性恶化。
65mn锰冷轧钢板建立了理论公式用以估算贝-马复相耐磨铸钢在盐雾腐蚀和冲击磨料磨损协同作用下的磨损失重。试制了一套贝-马复相耐磨铸钢衬板,工业生产的热处理参数制定为910±10℃保温5h,强制风冷,310±10℃回火8h,空冷。试制衬板的组织和性能达到指标要求,衬板整体力学性能与耐磨性均匀,工业应用后寿命超过目前使用的国产衬板平均寿命50%以上。
近年来,随着对汽车产业节能减排及提高性提出越来越高的要求,越来越多的研究者开始研究具有优异综合力学性能的中锰钢,以兼顾汽车轻量化65mn锰冷轧钢板、碰撞性及经济性的要求。基于成分优化及组织调控,中锰钢的力学性能得到较大幅度,但在中锰钢零部件冷加工成型及服役过程中面临的塑性变形和氢脆问题,日益成为其应用和服役的一个制约性因素。对此,本文针对一种新型的高强塑积含Al中锰钢0.25C-8.67Mn-0.54Si-2.69Al(wt%),采用预应变、电化学充氢、氢热分析(TDS)、慢应变速率拉伸(SSRT)、扫描电子显镜(SEM)、电子背散射衍射(EBSD)及透射电子显镜(TEM)等实验方法,较为系统地研究了热轧退火态和冷轧退火态实验钢在不同塑性变形量下的观组织、65锰钢板力学性能变化及氢脆敏感性的变化规律,可以得到以下结论:热轧退火实验钢主要由片层状的退火铁素体+逆转变奥氏体(RA)组成,其中RA含量约为60 vol%,强塑积高达69.1 GPa·%。
较基体的硬度值有很大。测得高锰钢基体摩擦系数在0.9左右,65锰钢板熔覆后的FeCoNiCrMnTix涂层耐磨性有了一定程度的,且随着Ti含量的增加,耐磨性随之,熔覆后的FeCoNiCrMnTix涂层在Ti0.5的情况下摩擦系数和磨损量达到小值,分别为0.38和10.8mg。
经时效处理后的FeCoNiCrMnTix涂层试样的耐磨性整体上有了很大的,随着Ti含量的增加,其耐磨性也成的趋势。65mn锰冷轧钢板其中时效处理后的FeCoNiCrMnTix涂层在Ti0.5的情况下摩擦系数和磨损量达到小值,分别为0.13和3.6mg。基体磨痕形貌为大量深且宽的滑沟,摩擦类型为磨粒磨损;熔覆后的涂层磨损形貌主要是较浅的滑沟,滑沟处有少量颗粒,且有层片状脱落,磨损形式为粘着磨损与磨粒磨损。在时效处理后,磨损形貌有了明显的改善,滑沟数量变少且更浅,磨粒基本消失。M13高锰钢基体的冲击韧性值经实验测得为148.33J/cm2,熔覆后的试样冲击韧性值在175J/cm2左右,相较于基体有所。
800°时效16小时后的试样冲击韧性值在155J/cm2左右,相较于时效前的试样冲击韧性值略下降,但经时效后的不含Ti元素的试样冲击韧性值达到了182J/cm2。65锰钢板高锰钢基体和熔覆后的涂层断口都含有大量韧窝,为韧性断裂;时效处理后除Ti0.5试样断口含有解理和韧窝,为脆性断裂和韧性断裂之外,其他试样断口均由大量韧窝构成,为韧性断裂。整体上FeCoNiCrMnTix较大程度上提高了M13高锰钢的冲击韧性。
日益增长的节能环保要求正不断推动着汽车轻量化进程,相较镁铝等轻质材料,65锰冷轧钢板汽车用钢面临着全流程绿色生产、高强高塑及优良成形性等多方面的挑战。
以中锰钢和淬火&配分(Q&P)钢为典型代表的第三代先进高强钢(AHSS)在汽车轻量化材料中具有良好的竞争力65锰钢板。本论文主要从第三代AHSS的关键相——亚稳态残留奥氏体的设计出发,结合中锰钢的奥氏体逆转变退火(ART)工艺及Q&P工艺,设计并制备了具有高残留奥氏体含量的超高强含铝中锰钢,系统性探索残留奥氏体含量、形态、尺寸及周围基体相的分布与其相变诱导塑性(TRIP)效应的相互关系,实现低成本、简工序的超高强(抗拉强度>1300MPa,强塑积>35GPa·%)含铝中锰钢的组织调控及强韧化机制研究。低成本无合金元素的“C-Si-Mn-Al”系成分设计及短工序低能耗的制备流程为汽车轻量化提供了优质的选材。
采用0.3C-1.5Si-4Mn,wt.%为基本合金体系,利用梯度铝含量(1\2\4,wt.%)调控中锰系钢的临界区温度及工艺窗口,实现高65mn锰冷轧钢板强度的基体组织设计,即“铁素体+残留奥氏体”的含铝中锰TRIP钢及“铁素体+回火马氏体+残留奥氏体”的含铝中锰淬火及回火配分(IQ-TP)钢。采用扫描电镜SEM、透射电镜TEM、电子背散射衍射EBSD、X射线衍射仪XRD等显组织形貌表征技术及相分析手段,结合原位变形技术系统性分析超高强含铝中锰钢的多元复合组织构成、应变协调性及强韧化机制;同时借助于电子探针EPMA分析宏观元素偏析行为,利用Thermo calc\DICTRA热力学动力学软件及原子探针层析术(APT)等深层次揭示观元素配分规律;合理调控临界区奥氏体化温度、加热速率、65mn锰冷轧钢板压下率等工艺参数,实现残留奥氏体及其他基本相的 化配置,改善或中锰系钢中的屈服平台及PLC塑性失稳现象。